
Create multi-purpose Web content with XSLT
Repurpose content without altering data

Skill Level: Introductory

Nicholas Chase (nicholas@nicholaschase.com)
Author
Studio B

18 Mar 2003

This tutorial is for developers who want to create content that can be repurposed for
a variety of presentations without affecting the original data. It explains how to create
a Java servlet that determines the means by which the data is being viewed and
uses XML and XSLT to provide the appropriate presentation. It also includes
information on using the servlet as the basis for a Web service.

Section 1. Introduction

Should I take this tutorial?

This tutorial is for developers who want to create content that can be repurposed for
a variety of presentations without affecting the original data. It explains how to create
a Java servlet that determines the means by which the data is being viewed and
uses XML and XSLT to provide the appropriate presentation. It also includes
information on using the servlet as the basis for a Web service.

This tutorial uses Java to transform XML data, but the XSLT concepts are common
to other languages as well. It assumes that you are familiar with XML and with XSL
Transformations, but the actual transformations themselves are a minor part of the
tutorial. An understanding of Java development is helpful, but not required.

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 33

mailto:nicholas@nicholaschase.com
http://www.ibm.com/legal/copytrade.shtml

What is this tutorial about?

As the Web grows, it is increasingly being pulled in opposite directions. On the
desktop, Web pages and the browsers that display them are becoming more and
more complex as companies strive for presentations that are eye-catching while still
being functional. At the same time, Web content is increasingly being repurposed for
devices such as pagers and mobile phones that, while more robust than they used
to be, are still incapable of handling some of these more complex pages. In addition,
the future will see more and more content accessed as Web services, which typically
requires an entirely different structure.

This tutorial takes a series of headlines stored in an XML file and explains how to
automatically choose the proper XSLT style sheet to display them in a traditional
browser or a mobile browser, and to return them as the response for a Web service,
both through a proxy created in WebSphere Studio V5 and directly.

The tutorial covers:

• The basic environment

• Creating a servlet

• Performing a transformation

• Selecting the appropriate style sheet

• Creating and accessing the Web service

Tools

You can gain a good understanding of the concepts behind this tutorial without
actually executing the examples, but should you choose to follow along, the
following tools should be installed and tested prior to starting the tutorial:

• Although not required, all of the necessary tools for creating XML and
XSLT files and Java classes, as well as creating the Web service proxy,
are available within IBM's WebSphere Studio V5. WebSphere Studio also
includes a test server environment for running the servlet, so you can
accomplish all of the development in this tutorial with this one tool.

• To see the mobile phone examples, you can download the Openwave
SDK, which includes a simulator that works over HTTP. Download the
SDK at http://developer.openwave.com/download/product_62.html. The
examples use only HTTP, so the WAP extension is not necessary for this
tutorial. (Phone screenshots provided by Openwave.)

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 2 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://developer.openwave.com/download/product_62.html
http://www.ibm.com/legal/copytrade.shtml

If you choose not to use WebSphere Studio or another development environment,
you can also complete the examples using:

• A text editor to create and XML and XSLT files.

• A Java development environment such as Sun's Java 2 Standard Edition
version 1.4, available at http://java.sun.com/j2se/1.4/. Version 1.4 has
built-in XML support.

• A servlet-capable Web server such as IBM's WebSphere Application
Server, or Apache Tomcat, available at
http://tomcat.apache.org/tomcat-4.1-doc/. (Even if you use WebSphere
Studio to create and test the application, you'll need a server on which to
deploy your production application.)

Section 2. Project overview

What we want to accomplish

One of the arguments for storing content in XML rather than directly as HTML is that
you can repurpose material for different media. Often companies and Web site
developers fail to use this capability because they don't know how easy it can be.

This tutorial takes a set of headlines that are stored in an XML file and transforms
them, using XSLT, into a variety of presentations. XSLT was specifically designed
for this purpose, providing an easy way to indicate different style sheets for a single
XML file.

Ultimately, your goal is to have a single servlet that analyzes any requests that come
in and decides which XSLT style sheet to use to transform the data.

The source file

Because of the nature of this tutorial, the XML file itself is fairly simple:

<?xml version="1.0" encoding="UTF-8"?>
<news>
<story storyid="1">

<headline>New trailers online</headline>
<blurb>Trailers for this year's summer movies debuted on TV

during the Super Bowl.</blurb>

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 33

http://java.sun.com/j2se/1.4/
http://tomcat.apache.org/tomcat-4.1-doc/
http://www.ibm.com/legal/copytrade.shtml

<permalink>
http://www.vanguardreport.com/phpnuke/modules.php?
name=News&file=rssArticle&sid=645

</permalink>
</story>
<story storyid="2">

<headline>NASA responds to UFO claims</headline>
<blurb>NASA has posted a response to EuroSETI's claims that

they have found proof of the existence of aliens,
explaining how these potential UFOs can be "created"
from their images.</blurb>

<permalink>
http://www.vanguardreport.com/phpnuke/modules.php?
name=News&file=rssArticle&sid=644

</permalink>
</story>
<story storyid="3">

<headline>Judge rules comic book mutants non-human</headline>
<blurb>In a customs lawsuit that made strange bedfellows, a

comic book company won a court judgement that its
mutant heroes are not human.</blurb>

<permalink>
http://www.vanguardreport.com/phpnuke/modules.php?
name=News&file=rssArticle&sid=640

</permalink>
</story>
<story storyid="4">

<headline>EuroSETI to announce UFO proof</headline>
<blurb>A group studying images normally used to search for

comets claims to have found photographic evidence of
UFOs.</blurb>

<permalink>
http://www.vanguardreport.com/phpnuke/modules.php?
name=News&file=rssArticle&sid=639

</permalink>
</story>
</news>

Note that the URLs in the permalink tags were split onto multiple lines for viewing
purposes only. In reality, the URLs are on a single line.

This file simply lists a number of stories, including their headlines, a simple
description, and a location where the complete story can be found.

The basic output

Given the lack of space in a tutorial (and the author's complete lack of visual design
skills) the basic output page, intended for traditional desktop browsers, is fairly
straightforward:

<?xml version="1.0" encoding="UTF-8"?>
<html>
<head><title>Vanguard Report headlines</title></head>
<body>
<center>
<img

src="http://www.vanguardreport.com/phpnuke/themes/3D-Fantasy/images/logo.gif"
alt="logo" width="340" height="100" />
</center>

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 4 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<h2 align="center">Today's Top Stories</h2>

<table>
<tr><td>

New trailers online
</td>
<td>

Trailers for this year's summer movies debuted on TV during
the Super Bowl.

</td></tr>
<tr><td>

NASA responds to UFO claims
</td>
<td>NASA has posted a response to EuroSETI's claims that

they have found proof of the existence of aliens, explaining
how these potential UFOs can be "created" from their images.</td></tr>

<tr><td>
Judge rules comic book mutants non-human</td>

<td>In a customs lawsuit that made strange bedfellows,
a comic book company won a court judgement that its mutant heroes
where not human.</td></tr>

<tr><td>
EuroSETI to announce UFO proof</td>

<td>A group studying images normally used to search for comets
claims to have found photographic evidence of UFOs.</td></tr>

</table>
</body>
</html>

This is the page that would probably be accessed most frequently, appearing when
the site is accessed with a traditional browser. When a headline is clicked, it goes to
a page with more information on that particular story.

Figure 1. Basic output page for traditional desktop browsers

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 33

http://www.ibm.com/legal/copytrade.shtml

The mobile output

At one time, writing a page for a mobile phone involved learning an entirely new
markup language. But the next generation of phones is equipped with a smaller
version of a traditional browser, making it possible to create pages that are much
more familiar to developers.

In this case, a simpler version of the original page, which uses a subset of XHTML
known as XHTML Mobile, suffices:

<?xml version="1.0" encoding="UTF-8"?>
<html>
<head><title>Vanguard Report Top Stories</title></head>
<body>

New trailers online

NASA responds to UFO claims

Judge rules comic book mutants non-human

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 6 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

EuroSETI to announce UFO proof

</body>
</html>

Figure 2. Simpler version of original page created with XHTML Mobil

The idea is that when one of these phones accesses the servlet, the servlet provides
this simplified version.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 33

http://www.ibm.com/legal/copytrade.shtml

Section 3. Setting up the environment

The Web environment

To make this scenario work, you're going to need a Web server that's capable of
serving dynamic content. This tutorial uses Java servlets as its development
platform, so ultimately you're going to need a Web server such as WebSphere
Application Server or Apache's Tomcat. (If you're using WebSphere Studio V5 for
development, you can skip this step until you're ready to put your application into
production.)

Both of these servers are J2EE compliant, which means that the Web application
you're building follows a particular directory structure so the server knows where to
find everything. How you should get started depends on the environment you're
using.

If you're using WebSphere Studio, the easiest way to start is to create a new Web
Project. This provides you with a test environment against which you can run the
servlets, and when you're ready to move to WebSphere Application Server, you can
simply export the EAR file and deploy it as an Enterprise Application using the
administration tools. (For more information on using WebSphere Studio and
Application Server, see Resources.)

If you're using Tomcat, the situation is a bit simpler. All applications are located in
the webapps directory. For example, after installation, Tomcat has a directory called
webapps/examples in which the examples application lives. If you were to create
a file called test.html and place it in this directory, you could access it by pointing
your browser to:

http://localhost:8080/examples/test.html

Any servlets for this application are located in
webapps/examples/WEB-INF/classes directory, which is mapped to the alias
servlet. This means that to access the servlet HelloWorldExample (in the file
webapps/examples/WEB-INF/classes/HelloWorldExample.class) you
would point your browser to:

http://localhost:8080/examples/servlet/HelloWorldExample

When using Tomcat, the simplest way to create a new application is to copy one of

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 8 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the existing applications, rename the directory, and restart Tomcat.

Let's get started by creating a simple servlet and accessing it.

The basic servlet

If you're using WebSphere Studio, start by choosing File => New => Project =>
Web Project to create a new J2EE project, and name it MultiUse. (For simplicity's
sake, place it in its own EAR file.) Choose File => New => Other => Web =>
Servlet to create a new servlet in the new project.

Create a new servlet named XSLServlet. (If you're not using WebSphere Studio,
save it as a .java file in the WEB-INF/classes directory of your application.)
Initially, it should look like this:

import java.io.IOException;
import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();
out.print("<html>");
out.print("<body>");
out.print("<p>It works!</p>");
out.print("</body>");
out.print("</html>");

}

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

doGet(req, resp);

}

}

A servlet has many more methods than these (inherited from HttpServlet), but
only doGet() and doPost() are important at the moment. The doGet() method
is executed when a browser simply points at the servlet (making it easy to simulate
by simply typing the URL), while the doPost() method is executed when a browser
submits a form that uses method="POST". In either case, the servlet should
perform the same actions, so in the sample servlet, doPost() simply calls
doGet().

The doGet() method takes two arguments: the request and the response. The

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 33

http://www.ibm.com/legal/copytrade.shtml

HttpServletRequest object carries information on what type of browser the user
has, what IP address he or she is coming from, and so on. It also carries any
parameters that were submitted with the request.

The HttpServletResponse object actually sends the information to the user.
When it does, that information needs to be identified as a certain type so the
browser knows what to do with it. In this case, the application will serve a simple
Web page, so set the Content-Type as text/html.

Finally, in order to actually output information, create a PrintWriter object by
requesting it from the HttpServletResponse object, then use it to print.

Now let's see the results.

Compiling and accessing the servlet

If you're using WebSphere Studio, saving the .java file also compiles it and places
the compiled class in the project's Web Content/WEB-INF/classes directory. To
execute the servlet, simply right-click the servlet file and choose Run on Server. If
asked, choose the Test Environment. If the server isn't running, start it and open a
Web Browser window to display the results.

Figure 3. Web Browser window displaying servlet results

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 10 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

If you're not using WebSphere Studio, compile the XSLServlet.java file, making
sure that the servlet.jar file (typically found in Tomcat's common\lib directory)
is on the classpath. Assuming an application named MultiUse, test the servlet by
pointing your browser to:

http://localhost:8080/MultiUse/servlet/XSLServlet

Before moving on, let's make sure the phone simulator is working.

The mobile phone simulator

To run the mobile phone example, download the Openwave SDK from
http://developer.openwave.com/download/product_62.html and install it. Part of this
download is a simulator that enables a developer to see how a page will look and
work on the small screen of a user's phone. It also enables the developer to catch
XHTML that is not part of the XHTML Mobile specification.

To test the sample servlet on the phone, start the Openwave SDK 6.2 HTTP
application and type the appropriate URL into the box next to Go:. For WebSphere
Studio, use:

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 33

http://developer.openwave.com/download/product_62.html
http://www.ibm.com/legal/copytrade.shtml

http://localhost:9080/MultiUse/XSLServlet

Because WebSphere Studio uses a plain HTTP server, it's available from outside
the WebSphere Studio environment.

For Tomcat, use

http://localhost:8080/MultiUse/servlet/XSLServlet

as before.

Now that the servlet's in place, let's add the transformation.

Section 4. The basic transformation

The basic style sheet

Let's start with a simple transformation, using an arbitrary style sheet. The basic
style sheet, intended for a desktop browser, displays a list of headlines and blurbs in
most cases. It carries a parameter, thisStory, which can be used to indicate that
only a single story should be displayed:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html" indent="yes"/>

<xsl:param name="thisStory" select="'all'"/>

<xsl:template match="/">

<html>
<head><title>Vanguard Report headlines</title></head>
<body>

<center>
<img

src="http://www.vanguardreport.com/phpnuke/themes/3D-Fantasy/images/logo.gif"
alt="logo" width="340" height="100" /></center>

<h2 align="center">Today's Top Stories</h2>

<table border="1">
<xsl:if test="$thisStory='all'">

<xsl:apply-templates select="/news/story"/>
</xsl:if>
<xsl:if test="$thisStory!='all'">

<xsl:call-template name="singleStory"/>

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 12 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

</xsl:if>
</table>

</body>
</html>

</xsl:template>
<xsl:template match="story">

<tr>
<td>
<xsl:element name="a">

<xsl:attribute name="href">/MultiUse/XSLServlet?storyid=<xsl:value-of
select="@storyid"/></xsl:attribute>

<xsl:value-of select="headline" />
</xsl:element>

</td>
<td><xsl:value-of select="blurb" /></td>

</tr>
</xsl:template>

<xsl:template name="singleStory">
<h3><xsl:value-of select="/news/story[@storyid=$thisStory]/headline" /></h3>
<p><xsl:value-of select="/news/story[@storyid=$thisStory]/blurb" /></p>
<p>Get the full story

<xsl:element name="a">
<xsl:attribute name="href"><xsl:value-of

select="/news/story[@storyid=$thisStory]/permalink"/></xsl:attribute>
here.

</xsl:element>
</p>

</xsl:template>

</xsl:stylesheet>

If you're using Tomcat, change the href attribute text from

/MultiUse/XSLServlet?storyid=

to

/MultiUse/servlet/XSLServlet?storyid=

so the generated link properly references the servlet.

Create the sources

Actually executing the transformation requires four basic steps:

1. Create the content source and the style source

2. Determine the destination for the result

3. Create the Transformer object using the style

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 33

http://www.ibm.com/legal/copytrade.shtml

4. Perform the transformation

First, create the sources:

...
import javax.xml.transform.stream.StreamSource;

public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();

StreamSource contentSource =
new StreamSource("http://localhost:9080/MultiUse/news.xml");

StreamSource styleSource =
new

StreamSource("http://localhost:9080/MultiUse/browser.xsl");
}

...
}

In the sample application, both the content and the style sheet are just files, but they
can also be SAX streams, DOM documents, or other sources. Also, notice that both
are specified here as fully-qualified URIs, so they can also be dynamically generated
by another process.

Both of these URIs assume that you're using WebSphere Studio and that the files
are in the Web Content directory. For Tomcat, put the files in the MultiUse
directory and adjust the port number accordingly.

Determine the result

Like the content and style sheet sources, a transformation result can be a file, a
DOM object, or a stream. In this case, the application sends the result of the
transformation directly to the PrintWriter that outputs content to the browser.

...
import javax.xml.transform.stream.StreamResult;

public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();

StreamSource contentSource =
new StreamSource("http://localhost:9080/MultiUse/news.xml");

StreamSource styleSource =
new StreamSource("http://localhost:9080/MultiUse/browser.xsl");

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 14 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

StreamResult result = new StreamResult(out);

}
...
}

Now that the sources and result have been determined, it's time to create the actual
Transformer object.

Create the Transformer

The Transformer object actually performs the XSL transformation, and in order to
do that, it takes its instructions from the style sheet source:

...
import javax.xml.transform.TransformerFactory;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerConfigurationException;

public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();

try{
StreamSource contentSource =
new StreamSource("http://localhost:9080/MultiUse/news.xml");

StreamSource styleSource =
new StreamSource("http://localhost:9080/MultiUse/browser.xsl");

StreamResult result = new StreamResult(out);

TransformerFactory transformerFactory =
TransformerFactory.newInstance();

Transformer transformer =
transformerFactory.newTransformer(styleSource);

} catch (TransformerConfigurationException e) {
out.print("TransformerConfigurationException:

"+e.getMessage());
}

}
...
}

The TransformerFactory creates the Transformer using the style sheet
source as input. To perform an identity transform, in which the XML data remains
unchanged, simply create the Transformer with no style sheet input. This
technique acts as a handy serialization tool for situations where you might want to,
say, output a DOM document.

Now the application is ready to perform the actual transformation.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 33

http://www.ibm.com/legal/copytrade.shtml

Perform the transformation

Actually performing the transformation is straightforward. Simply call the
transform() method, providing a source to transform and a result to receive the
transformed document. (Remember, the style sheet was used to create the
Transformer object itself.)

import java.io.IOException;
import javax.servlet.ServletException;

...
import javax.xml.transform.TransformerException;

public class XSLServlet extends HttpServlet {

...
Transformer transformer =

transformerFactory.newTransformer(styleSource);

transformer.transform(contentSource, result);

} catch (TransformerConfigurationException e) {
out.print("TransformerConfigurationException: "+e.getMessage());

} catch (TransformerException e) {
out.print("TransformerException:"+e.getMessage());

}

}
...
}

The transformer takes the contentSource, transforms it, and sends the new
structure to the result object.

See the results

To see the results, make sure the news.xml and browser.xsl files are in their proper
locations and execute the servlet as discussed in Compiling and accessing the
servlet.

Figure 4. Basic output page for traditional desktop browsers

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 16 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Retrieving a request parameter

So far the servlet processes the style sheet as-is, outputting all of the potential
stories, but the style sheet itself is designed to allow for the addition of a parameter
that determines which story to display. This parameter is passed as part of the URL
when the user clicks on one of the links created on the page.

The first step is to retrieve this information from the storyid parameter submitted
with the original request:

...
Transformer transformer =

transformerFactory.newTransformer(styleSource);

String thisStory = req.getParameter("storyid");

transformer.transform(contentSource, result);

} catch (TransformerConfigurationException e) {
out.print("TransformerConfigurationException: "+e.getMessage());

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 33

http://www.ibm.com/legal/copytrade.shtml

...

The next step is to set the parameter on the style sheet.

Setting a style sheet parameter

To set the parameter for the style sheet itself, use the Transformer object's
setParameter() method:

...
String thisStory = req.getParameter("storyid");
if (thisStory == null) {

thisStory = "all";
}
transformer.setParameter("thisStory", thisStory);

transformer.transform(contentSource, result);

} catch (TransformerConfigurationException e) {
out.print("TransformerConfigurationException: "+e.getMessage());

...

The style sheet itself is built so that if no parameter is submitted, thisStory
defaults to all; thus, if no parameter has been submitted with the request, set
thisStory to all to match that expectation.

Section 5. Selecting a style sheet

Pointing to the style sheet

So far, the application has been using an arbitrary style sheet, but in the final
application, the XML file will have several possible style sheets noted within it. The
servlet will then check each one against the request to decide which to use.

Adding the style sheet directive to the XML file is a straightforward matter of adding
the xml-stylesheet processing instruction:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet

href="http://localhost:9080/MultiUse/browser.xsl"
type="text/xsl" ?>

<news>
<story storyid="1">

<headline>New trailers online</headline>

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 18 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<blurb>Trailers for this year's summer movies debuted
on TV during the Super Bowl.</blurb>

...

With the directive in place, the servlet can extract the information at run-time.

Getting the style sheet

When retrieving the style sheet information from the XML file, the only thing that
changes is the designation of the style sheet Source object:

...
import javax.xml.transform.Source;

public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();

try{
StreamSource contentSource =

new StreamSource("http://localhost:9080/MultiUse/news.xml");

StreamResult result = new StreamResult(out);

TransformerFactory transformerFactory =
TransformerFactory.newInstance();

Source styleSource =
transformerFactory.getAssociatedStylesheet(
contentSource, null, null ,null);

Transformer transformer =
transformerFactory.newTransformer(styleSource);

String thisStory = req.getParameter("storyid");
if (thisStory == null) {

thisStory = "all";
}
transformer.setParameter("thisStory", thisStory);

transformer.transform(contentSource, result);
...
}

Note that the TransformerFactory retrieves the style sheet so that it's available
to create the Transformer.

In this case, the servlet is retrieving a single style sheet -- you can test it by
executing the servlet -- but in the application in progress here, the XML file will have
several choices available. The three null values in getAssociatedStyleSheet()
are involved in making that choice, as seen in Choosing based on the media.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 33

http://www.ibm.com/legal/copytrade.shtml

The mobile style sheet

The second style sheet that's added to the mix is the mobile style sheet, for smaller
devices such as cell phones and PDAs:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html" indent="yes"/>

<xsl:param name="thisStory" select="'all'"/>

<xsl:template match="/">

<html>
<head><title>Vanguard Report Top Stories</title></head>
<body>

<xsl:if test="$thisStory='all'">

<xsl:apply-templates select="/news/story"/>
</xsl:if>
<xsl:if test="$thisStory!='all'">

<xsl:call-template name="singleStory"/>
</xsl:if>

</body>
</html>

</xsl:template>
<xsl:template match="story">

<xsl:element name="a">
<xsl:attribute

name="href">/MultiUse/XSLServlet?storyid=<xsl:value-of
select="@storyid"/></xsl:attribute>

<xsl:value-of select="headline" />
</xsl:element>

</xsl:template>

<xsl:template name="singleStory">
<p><xsl:value-of

select="/news/story[@storyid=$thisStory]/headline" /></p>
<p>

<xsl:element name="a">
<xsl:attribute name="href"><xsl:value-of

select="/news/story[@storyid=$thisStory]/permalink"/></xsl:attribute>
Full Story

</xsl:element>
</p>

</xsl:template>

</xsl:stylesheet>

You can reference this style sheet in the XML file just as you referenced the first
one.

Adding an alternate style sheet

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 20 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

XSL Transformations are specifically geared towards taking the same content and
repurposing it for different media. Specifically, a style sheet for the Web is going to
look very different from a style sheet that prepares content for output as a paper
brochure. For this purpose, the style sheet directive can carry a media attribute to
distinguish between style sheets for different purposes.

Because there is no set of required values, however, you can arbitrarily set the
media attribute to distinguish between different presentations as you see fit. For
example, you could have different style sheets for older versions of Netscape versus
current versions, or for Netscape versus Internet Explorer.

In the case of this tutorial, you'll specify a general style sheet and a mobile style
sheet:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="http://localhost:9080/MultiUse/mobile.xsl"

type="text/xsl"
media="mobile" alternate="yes"?>

<?xml-stylesheet href="http://localhost:9080/MultiUse/browser.xsl"
type="text/xsl"
media="general"?>

<news>
<story storyid="1">

<headline>New trailers online</headline>
<blurb>Trailers for this year's summer movies debuted on TV
during the Super Bowl.</blurb>

...

The servlet can then use this information to choose the appropriate style sheet.

Choosing based on the media

Using the media parameter, choose the general style sheet.

...
TransformerFactory transformerFactory =

TransformerFactory.newInstance();

Source styleSource =
transformerFactory.getAssociatedStylesheet(contentSource,
"general", null ,null);

Transformer transformer =
transformerFactory.newTransformer(styleSource);

...

Here the TransformerFactory is looking for the style sheet with a media value of
general. The other two values enable you to choose a style sheet based on the
optional title and charset attributes.

Here the choice is arbitrary; next you'll base it on the user-agent.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 33

http://www.ibm.com/legal/copytrade.shtml

Choosing based on the user-agent

When you surf the Web, your browser gives the Web server a number of different
information items about you, including the IP address you're surfing from and the
type of browser you're using. This information is sent to the server in the form of
headers that are part of the request.

The type of browser, or user agent, can be seen in the USER-AGENT header. For
example, the machine on which this tutorial is being written has three different
browsers installed:

Netscape Navigator 4.790

Mozilla/4.79 [en] (Windows NT 5.0; U)

Microsoft Internet Explorer 6.0

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Openwave SDK v6.2 HTTP

OPWV-SDK/62 UP.Browser/6.2.0.1.185 (GUI) MMP/2.0

Notice that each is unique, so it's possible to use this information to decide which
style sheet media value to use:

...
public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();

String media = "";
if (req.getHeader("USER-AGENT").indexOf("UP.") > 0) {

media = "mobile";
} else {

media = "general";
}

try{
StreamSource contentSource =

new StreamSource("http://localhost:9080/MultiUse/news.xml");

StreamResult result = new StreamResult(out);

TransformerFactory transformerFactory =
TransformerFactory.newInstance();

Source styleSource =
transformerFactory.getAssociatedStylesheet(contentSource,

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 22 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

media
, null ,null);

Transformer transformer =
transformerFactory.newTransformer(styleSource);

...

Now, if you run the servlet in the browser and in the phone simulator, you should see
different results. (Note that the phone simulator has to be manually refreshed. Click
the M button, then the 8 key to reload the page.)

Of course, it would get extremely tedious to hard-code every possible combination of
browser agents into the application itself. Instead, you can create a list of criteria in a
properties file, which the servlet can easily read and understand.

Creating properties

A properties file is simply a text file with name-value pairs, one pair per line, as in:

Mozilla=general
MSIE=general
UP.=mobile
Nokia=mobile

Note that a properties file can use an equals sign (=), a colon (:), or a plain white
space as a delimeter between a key and its value.

Create a properties file and save it anywhere on your system, as long as it's
accessible by the servlet.

Using properties

The first step in using a properties file is to create a Properties object and load
the new file:

...
import java.util.Properties;

import java.io.InputStream;
import java.io.FileNotFoundException;

public class XSLServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();
String media = getMedia(req.getHeader("USER-AGENT"));

try{
StreamSource contentSource =

new StreamSource("http://localhost:9080/MultiUse/news.xml");

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 33

http://www.ibm.com/legal/copytrade.shtml

...
public static String getMedia(String agent){

String media = "general";

Properties browserProps = new Properties();
try {
browserProps.load(new

java.io.FileInputStream("h:\\browser.properties"));
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}

return media;
}

}

In this case, the file browser.properties was located at the root of the h: drive.
The double backslash (\\) is included so that Java understands you're looking for
a backslash and not trying to escape the b in browser.

Searching properties

All that's left is to have the getMedia() method search each of the available
properties to see if any of them match the user-agent.

...
import java.util.Enumeration;

public class XSLServlet extends HttpServlet {
...
public static String getMedia(String agent){

String media = "general";

Properties browserProps = new Properties();
try {

browserProps.load(new java.io.FileInputStream("h:\\browser.properties"));
Enumeration allBrowsers = browserProps.propertyNames();

while (allBrowsers.hasMoreElements()){
String thisBrowser = allBrowsers.nextElement().toString();
if (agent.indexOf(thisBrowser) > 0) {

media = browserProps.getProperty(thisBrowser);
break;

}
}

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

return media;
}

}

The propertyNames() method returns an enumeration of all the keys (such as, in

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 24 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

this case, Mozilla or Up.). The servlet can then run through each of those names,
checking to see whether it's part of the user-agent. If it does find one, it sets the
media value and breaks out of the loop.

In this way, you can add new style sheets and new presentation platforms without
ever having to change the servlet itself. In fact, by altering the servlet to take the
XML file as a parameter, you can create a servlet that is completely generic.

Section 6. The servlet as a Web service

The view from 10,000 feet

The purpose of this tutorial is to demonstrate the use of XSLT to make content
available in a number of different contexts, so let's take a moment to look at a
situation that is different from a typical browser setup.

In the emerging world of Web services, a system sends a specially formed XML
message, known as a SOAP message, to a server, which interprets it, generates
another SOAP message in response, and sends it back to the original requester.
The ultimate goal is typically a single piece of data or a group of data items.

Creating an actual Web service can be difficult, but fortunately WebSphere Studio
automates the entire process, creating a proxy that acts as a wrapper for a class
such as the servlet. The proxy receives the SOAP message and decodes it,
determining what method is being requested. It then executes the method and
encodes the result in a SOAP response.

To see how this would work, you can wrap the servlet in a Web service and then test
it.

Moving the transformation

Before you can actually wrap the servlet, however, you need to make a change to it.
A Web service returns a piece of information in the form of a String or other object,
so the stream of information returned by the HttpServletResponse object isn't
ideally suited for it. Fortunately, all that's being returned is the String value of the
transformation, so by breaking it out into a separate method, you can use it for both
purposes:

...

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 33

http://www.ibm.com/legal/copytrade.shtml

import java.io.StringWriter;

public class XSLServlet extends HttpServlet {

public static String getTransform(String media, String thisStory){
try{

StreamSource contentSource =
new StreamSource("http://localhost:9080/MultiUse/news.xml");

StringWriter resultStringWriter = new StringWriter();
StreamResult result = new StreamResult(resultStringWriter);

TransformerFactory transformerFactory =
TransformerFactory.newInstance();

Source styleSource =
transformerFactory.getAssociatedStylesheet(
contentSource, media, null ,null);

Transformer transformer =
transformerFactory.newTransformer(styleSource);

if (thisStory == null) {
thisStory = "all";

}
transformer.setParameter("thisStory", thisStory);

transformer.transform(contentSource, result);

return resultStringWriter.toString();

} catch (TransformerConfigurationException e) {
return "TransformerConfigurationException: "+e.getMessage();

} catch (TransformerException e) {
return "TransformerException:"+e.getMessage();

}

}

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
java.io.PrintWriter out = resp.getWriter();

String media = getMedia(req.getHeader("USER-AGENT"));
String thisStory = req.getParameter("storyid");

out.print(getTransform(media, thisStory));
}
...

Aside from the reorganization, the only thing that's really changed here is that
instead of sending the result to the PrintWriter, the method sends the result to a
StringWriter. The StringWriter is a handy class that enables you to save as
a String information that normally would have been immediately written to a
stream.

When the transformation is complete, the String is returned. In the case of a
typical request, doGet() calls getTransform() and returns the String to the
browser. However, there's nothing to say that getTransform() can't be called
directly. That's what will happen with the Web service.

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 26 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The Web services style sheet

Before you go any farther, you need to create the new style sheet for the Web
service:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text" indent="yes"/>

<xsl:param name="thisStory" select="'all'"/>

<xsl:template match="/">
<xsl:if test="$thisStory='all'">

<xsl:apply-templates select="/news/story"/>
</xsl:if>
<xsl:if test="$thisStory!='all'">

<xsl:call-template name="singleStory"/>
</xsl:if>

</xsl:template>
<xsl:template match="story">

<xsl:value-of select="headline" /><xsl:text>
</xsl:text>
</xsl:template>

<xsl:template name="singleStory">
<xsl:value-of select="/news/story[@storyid=$thisStory]/blurb" />

</xsl:template>

</xsl:stylesheet>

The style sheet is simple, returning a sequence of headlines or a single blurb,
depending on whether a particular story has been requested.

The new style sheet is also added to the XML file:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="http://localhost:9080/MultiUse/webservice.xsl"
type="text/xsl"
media="webservice" alternate="yes"?>
<?xml-stylesheet href="http://localhost:9080/MultiUse/mobile.xsl"
type="text/xsl"
media="mobile" alternate="yes"?>
<?xml-stylesheet href="http://localhost:9080/MultiUse/browser.xsl"
type="text/xsl"
media="general" ?>

<news>
...

Create the proxy service

To create the proxy, choose File => New => Other => WebServices => Web
Service => Next. For the Web service type, choose Java bean Web Service.
Make sure Generate a proxy is selected, and select Test the generated proxy.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 27 of 33

http://www.ibm.com/legal/copytrade.shtml

Figure 5. Service generation dialog

Click Next, and then click Next again to use the default server environment.

Create the proxy service, continued

Click Browse files... and navigate to the servlet.

Figure 6. Choosing the servlet

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 28 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Click OK to select the class, and then click Finish to create the Web service.

WebSphere Studio takes a minute or two to generate the Web service and a sample
client with which you can test it.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 29 of 33

http://www.ibm.com/legal/copytrade.shtml

Test the service

WebSphere Studio automatically brings up a series of Web pages that enable you to
test the new Web service. Down the left side you will see all of the methods
available. Because we didn't narrow it down when creating the service, all of the
methods for a servlet are available to the client. Scroll this frame until you can click
the getTransform() link.

Click this link to bring up a form in the top right frame. This form gives you an
opportunity to enter values for the two parameters of getTransform(), which are,
as you may recall, the media and the storyid, thisStory. Enter webservices as
the media and enter all for thisStory. Click Invoke to see the results in the
bottom frame.

Figure 7. Page results for Web services

Section 7. Summary

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 30 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Tutorial summary

XSL Transformations were created to enable the same content to be rendered in
multiple ways for different purposes. This tutorial has demonstrated the ways that
you can use a Java servlet to distinguish between different requesters and return the
appropriate content based on the appropriate style sheet. In this tutorial, you have
learned how to:

• Execute a transformation

• Indicate a style sheet on an XML document

• Choose between different style sheets

• Use properties to choose from many different possibilities

• Use XSLT in conjunction with a Web service

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 31 of 33

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Get a better understanding of the XSL Transformations process with:

• Introduction to XML (developerWorks, August 2002)

• XML Programming in Java (developerWorks, September 1999)

• Manipulating data with XSL (developerWorks, October 2001)

• Learn about servlets with the Building Java HTTP servlets tutorial
(developerWorks, September 2000).

• Take the Introduction to WebSphere Studio tutorial to familiarize yourself with
development using the WebSphere Studio platform in general (developerWorks,
October 2000).

• Get a feel for Developing database applications with WebSphere and DB2.

• For a look at deploying applications to WebSphere Application Server, take the
Building Web Services with WebSphere Studio Part 2: Deploy and publish
tutorial.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Download Sun's Java 2 Standard Edition version 1.4 at
http://java.sun.com/j2se/1.4/.

• Download Apache Tomcat at http://tomcat.apache.org/tomcat-4.1-doc/.

• Build your next development project with IBM trial software, available for
download directly from developerWorks.

Discuss

• Participate in the discussion forum for this content.

About the author

Nicholas Chase
Nicholas Chase, a Studio B author, has been involved in Web site development for
companies such as Lucent Technologies, Sun Microsystems, Oracle, and the Tampa
Bay Buccaneers. Nick has been a high school physics teacher, a low-level
radioactive waste facility manager, an online science fiction magazine editor, a
multimedia engineer, and an Oracle instructor. More recently, he was the Chief

developerWorks® ibm.com/developerWorks

Create multi-purpose Web content with XSLT
Page 32 of 33 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/edu/x-dw-xxsldata-i.html?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/edu/j-dw-javaservlets-i.html?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/edu/i-dw-webspherestudio-i.html?S_TACT=105AGX06&S_CMP=tut
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=dw-db2dbapps
http://www.ibm.com/developerworks/edu/i-dw-wes-ws511pt2-i.html?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX06&S_CMP=tut
http://java.sun.com/j2se/1.4/
http://tomcat.apache.org/tomcat-4.1-doc/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/developerworks/community/
http://www.studiob.com/
http://www.ibm.com/legal/copytrade.shtml

Technology Officer of Site Dynamics Interactive Communications in Clearwater,
Florida, USA, and is the author of four books on Web development, including XML
Primer Plus (Sams). He loves to hear from readers and can be reached at
nicholas@nicholaschase.com.

ibm.com/developerWorks developerWorks®

Create multi-purpose Web content with XSLT
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 33 of 33

http://www.amazon.com/exec/obidos/ASIN/0672324229/thevanguardsc-20
http://www.amazon.com/exec/obidos/ASIN/0672324229/thevanguardsc-20
mailto:nicholas@nicholaschase.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	Should I take this tutorial?
	What is this tutorial about?
	Tools

	Project overview
	What we want to accomplish
	The source file
	The basic output
	The mobile output

	Setting up the environment
	The Web environment
	The basic servlet
	Compiling and accessing the servlet
	The mobile phone simulator

	The basic transformation
	The basic style sheet
	Create the sources
	Determine the result
	Create the Transformer
	Perform the transformation
	See the results
	Retrieving a request parameter
	Setting a style sheet parameter

	Selecting a style sheet
	Pointing to the style sheet
	Getting the style sheet
	The mobile style sheet
	Adding an alternate style sheet
	Choosing based on the media
	Choosing based on the user-agent
	Creating properties
	Using properties
	Searching properties

	The servlet as a Web service
	The view from 10,000 feet
	Moving the transformation
	The Web services style sheet
	Create the proxy service
	Create the proxy service, continued
	Test the service

	Summary
	Tutorial summary

	Resources
	About the author

